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Abstract

Model risk needs to be recognized and accounted for in addition to market

risk. Uncertainty in risk measures estimates may lead to false security in finan-

cial markets. We argue that quantile type risk-measures are at least as good as

expected shortfall. We demonstrate how a bank can choose among competing

models for measuring market risk and account for model risk. Some BCBS cap-

ital requirements formula currently in effect leads to excessive capital buffers

even on an unstressed basis. We highlight that the loss to society associated

with the inefficient minimum capital requirements calculations is economically

substantial over time.
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1 Motivation

FEDR (2011) mentions explicitly that “model risk should be managed like other

types of risk and that banks should identify the sources of model risk and assess the

magnitude”. Similarly, EBA (2012) states: “Institutions should include the impact of

valuation model risk when assessing the prudent value of its balance sheet. [..] Where

possible an institution should quantify model risk by comparing the valuations pro-

duced from the full spectrum of modelling and calibration approaches.” Nevertheless

how to account for parameter estimation risk and how to adjust accordingly capital

requirements is still very much open to research. Opaque internal models produce

inconsistent risk valuations across the financial system. A more standardized ap-

proach, aimed at reducing the observed variability in risk calculations resulting from

internal models of various banks relative to similar market positions, is desirable.

On the other hand, banks point out that using a standardised approach may lead to

increased systemic risk and inefficient capital usage that will ultimately lead to more

problems down the line. Is it possible to emerge from this conundrum?

Model risk can be generally defined as the risk to incur a loss due to the im-

plementation of potentially inaccurate financial models. Green and Figlewski (1999)

provided evidence that imperfect models and inaccurate volatility forecasts may lead

to significant risk exposure for banks. Significant errors in the estimation methods

used in the finance industry were reported by Marshall and Siegel (1997), Berkowitz

(2001) and Berkowitz and O’ Brien (2002). Banks may also overestimate risk through

VaR estimates (Pérignon et al., 2008). Estimation error in financial markets can be

substantial, as demonstrated by Figlewski (2003) who offered a surprising but elegant

explanation of extreme tail events that can be classified as rare only when distribu-

tions and their parameters are fully known. At the other end it is possible to have

very different risk models that produce virtually identical performance under standard

metrics, as highlighted by Chava et al. (2011). Even before the subprime crisis there

was evidence, see Pérignon and Smith (2010), that more information about market
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risk was revealed to the public but its quality did not improve between 1996 and

2005. Here, we are trying to advocate for a more pro-active approach in accounting

for parameter estimation uncertainty while at the same time consider also inference

that gravitates towards a model-free or a general model approach. Enhancing risk

estimation by calculating confidence intervals for VaR as detailed in this paper will

allow risk managers and regulators to have a clear view on estimation error.

Within an ideal capital market the well-known theoretical argument of Modigliani

and Miller implies that companies should not be concerned with risk management

and capital allocation because investors can diversify their portfolios at no extra cost.

However, due to asymmetric information, companies may find it expensive to increase

their level of capitalization in difficult market conditions. Froot (2007) argued that

even in normal times companies may miss the opportunity of engaging into profitable

new projects when internal capital is low and external capital is expensive. Holding

too much buffer capital is clearly costly but the regulator may insist on conservative

calculations for capital requirements as a mechanism to control the risk of bank failure.

Increasing capital requirements may trigger a sudden increase in shadow banking

activities carrying much larger risk (Plantin, 2015). Excessive capital requirements

reduce the tactical flexibility of banks expanding the problem of debt overhang and

generate agency problems for the shareholders. Ibragimov et al. (2011) demonstrated

that increasing capital requirements is detrimental also to the regulator since that

capital cannot be used to offset negative externalities of systemic risk. Vallasca and

Hagendorff (2013) revealed that the minimum capital requirements may not be robust,

showing evidence of ill-calibration to a market measure of bank portfolio risk.

Our contribution in this paper unfolds as follows. First we present a critical com-

parison of the two main risk measures used in the risk management literature and

finance industry, value-at-risk (VaR) and expected shortfall (ES), highlighting that

from many theoretical and applied points of view, the former is to be preferred. Fur-

thermore, we construct a rationale for employing the conditional Median Shortfall
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(MS) as a measure of tail risk. The difference between MS and VaR is proposed here

to represent unexpected losses, or losses beyond the maximum expected level measured

by VaR. This is a new concept in risk management and we believe that risk forecasting

calculations should be dichotomised into expected losses, that can be managed using

VaR under normal market conditions, and unexpected losses defined as extra losses

caused by market distress events. Then, since both VaR and MS are quantile based

measures from a statistical point of view, we are able to use robust results from order

statistics theory to design a tool able to validate and differentiate between competing

models of forecasting market risk. To this end we are able to utilise the exact proba-

bility density or cumulative distribution function of our proposed quantile estimators

of risk, under a wide range of distributions encountered in practice, and consequently

we show how to calculate confidence intervals analytically or numerically.

While the literature has a myriad of statistical models to calculate VaR, in this

paper we have a set of five most widely used models in risk management– nonparamet-

ric, gaussian, normal inverse gaussian (NIG), GARCH(1,1) and GJR-GARCH(1,1)–,

and two main assets, one equity index and one foreign exchange. The upper bounds

of the calculated confidence intervals are used to adjust the point estimates of market

risk measures for parameter estimation uncertainty. Our methodology can be easily

adapted to other distributions employed in the literature or in practice.

An exhaustive empirical exercise covering the period 02/01/1984 − 10/07/2014

allows us to judge the usefulness of these widely used methods, the new Basel 3

accord and also of our proposed method, by considering a battery of backtests. From

our examples, the Lévy model based on the NIG distribution emerges as a flexible

risk management model allowing calculations that are robust and superior to the

other compared models. The last part of the paper is dedicated to the study of

capital requirements calculations. We show that the BCBS recommended levels BCBS

(2010), even when ignoring stressed market scenarios that occur rarely, are excessive

for long periods of time. Moreover, capital requirements calculations using a model
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such as NIG adjusted for parameter estimation model risk is robust over time to

market shocks and crashes that are endogenous to the market. In addition, we discuss

the savings that could be generated by not locking vast amounts of capital as required

by regulators.

Posner (2014) argued that it was always unclear how regulators precisely arrived

at how high or low the minimum capital-asset ratio should be. In his study of U.S.

regulators justifications for five regulations issued over more than 30 years Posner

(2014) concluded that

“regulators have never performed (or at least disclosed) a serious economic

analysis that would justify the levels that they chose. Instead, regulators

appear to have followed a practice of what I call “norming”-incremental

change designed to weed out a handful of outlier banks. This approach

resulted in a significant regulatory failure because it could not have given,

and did not give, banks an adequate incentive to increase capital. The

failure of banking regulators to use cost-benefit analysis in order to deter-

mine capital requirements may therefore have contributed to the financial

crisis of 2007-2008”.

The current state of academic and practitioner knowledge in risk management

is still unclear as to which measure of risk and which model to use for calculating

risk management buffers against future losses. Brock et al. (2003) and Brock et al.

(2007) explore ways to integrate model risk into policy evaluation by model averaging

methods. Our approach complies with recent specifications on how to deal with

model risk. For example, EBA (2012) makes a distinction between the “prudent”

value accounting for unexpected losses represented by the end point of a confidence

interval generated by model risk and the fair value of a financial product. This is called

the additional valuation adjustment (AVA). Our calculations of capital requirements

adjusted for model risk are in the same unit as market risk and therefore, as argued by

Detering and Packham (2015), from a regulatory point of view, systematic mispricing
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can be prevented and systemic risk can be reduced.

Our paper continues1 the line of research showed in Kerkhof et al. (2010). Focus-

ing on an equity index and an exchange rate, they proposed a method to explicitly

include model risk, associated with the application of econometric methods, into the

computation of the required levels of capital reserves2. While Kerkhof et al. (2010)

capture model risk as a multiplication factor between a parametric gaussian model

and the upper bound of a non-parametric model only, we advocate a wider more

flexible methodology that can be used in a similar set-up. We show how one can

obtain nonparametric and parametric confidence bounds specific to each distribution

and moreover we identify a test for model validation focused on extreme losses. More-

over, we consider a much larger set of backtesting tests for VaR and ES and we extend

our analysis over the subprime crisis period. Furthermore, we also analyse the MS

as a tail risk measure competing with the ES and compare our capital requirements

calculations with the values resulting from the BCBS formula. Our calculations of

confidence intervals is more general and it does not rely on asymptotics statistics.

In our paper there are valuable lessons to learn both from a company perspective

and a regulator perspective regarding which risk measure to use for market risk,

how to account for parameter estimation risk for quantile based risk measures and

how to validate models with a focus on tail risk. Furthermore, our approach for

managing risk arrives at similar conclusions with Diamond and Rajan (2000), den

Heuvel (2008) and Gorton and Winton (2014) that banking capital requirements may

be economically and socially costly and that the banking system could be destabilized

by following blindly regulatory minimums. We advocate a pro-active risk monitoring

1Other contributions proposed different solutions to quantify model risk across various as-
set classes, such as private equity investments (Bongaerts and Charlier, 2009), foreign exchange
(Markiewicz, 2012), commodities (Barone-Adesi et al., 2016) or derivatives (Detering and Pack-
ham, 2015). Important papers covering various aspects of model risk in risk management area
are Figlewski (2003), Cont et al. (2010), Kerkhof et al. (2010), Dowd (2010), Escanciano and
Olmo (2011), Alexander and Sarabia (2012), Gourieroux and Zaköıan (2013), Boucher et al. (2014),
Barone-Adesi (2015), Danielsson and Zhou (2015), Danielsson et al. (2016).

2 Other papers aiming at determining capital requirements linked to model risk include Glasser-
man and Xu (2014) and Detering and Packham (2015).

5



approach based on models that are frequently backtested. This approach can save

vast amounts of money that can be used elsewhere for the benefit of society.

The paper is structured as follows. In Section 2 we present a critique of VaR versus

ES and we also compare them with a more recent measure called median shortfall.

Section 3 is dedicated to model risk related to market risk, describing the main

concepts, problems arising in this area and the technical solutions that we propose.

Section 4 describes the data that is used in this study and Section 5 includes a suite

of empirical applications demonstrating how to select the correct risk measure and

risk model. Section 6 contains the results of backtesting based on several important

tests. An important part of the paper is revealed in Section 7 that demonstrates how

to incorporate model risk into capital requirements calculations and that important

capital savings can be made that can be transferred elsewhere in the economy for

the benefit of the society. The last section contains a summary of our results and

recommendations based on our findings.

2 Which Risk Measure to Choose?

In this section we describe briefly a less known measure for tail risk (MS) and a critical

comparative survey of the main properties of VaR, MS and ES highlighting that the

pair VaR and MS will provide a risk management tool that is at least as good as ES.

2.1 Motivation for Conditional Median Shortfall

The VaR measure of market risk gives an indication of the maximum possible losses,

at a given level of confidence, during normal market conditions. Hence, VaR is a

measure of “expected losses”. The ES on the other hand is a barometer of possible

extreme, or rare losses. Thus, ES is a measure of “unexpected losses”. There is

a large literature on the pros and cons of each measure. Ideally one would like to

capture both types of loss. Therefore, we advocate using two measures of risk, one
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for expected losses and associated with a higher order quantile and the other for

unexpected losses and given by a measure of tail risk such as a low order quantile.

There is a well documented positive and significant relationship between VaR as a

measure of downside risk and the expected return on the market (Bali et al., 2009).

Moreover, VaR at 99% confidence level was successfully employed by Allen et al.

(2012) for estimating catastrophic risk in the financial sector. Working in a Lucas

pure exchange economy Basak and Shapiro (2001) revealed that, when there are risk

managers using VaR to control risk, the stock market volatility increases in down

market and decreases in up markets.

For tail risk, ES has been the workhorse3 in risk management for the last decade

at least, its usage being strongly advocated since BCBS (2012). However, from a

practical perspective, ES does have a major shortcoming in being very sensitive to

outliers. Therefore, a very large loss triggered by rogue trading4 will cause a distortion

of the measure of tail risk and consequently an exacerbation of capital requirements

that are driven by market risk. It is clearly impossible to forecast losses caused by

rogue trading as intrinsic market risk losses5. Is it possible to find a measure of

extreme tail risk that can capture endogenous tail market risk and that is better

immunised to external market shocks?

We advocate in this paper using the median shortfall as a measure of tail risk.

This is the same as minus the median of the conditional returns6 lower than the VaR

threshold as defined by So and Wong (2012). It was also suggested independently

3There were few measures introduced approximately at the same time to measure losses in the tail
determined by VaR as a cutoff point. Acerbi and Tasche (2002) clarifying the differences between
various measures. For our purposes, since we consider that the distribution function of the data
generating process is always continuous, all these measures are identical.

4The losses in Barings case in 1995 reached $1.4 billion, for Amaranth in 2006 the loss was $3.295
billion, for Societe Generale in 2008 it was $7.2 billion and for UBS in 2011 it was reported as
roughly $2 billion.

5Losses caused by rogue trading or other causes external to the market itself are still important
but they need to be captured under operational risk not market risk.

6Since estimating VaR is a single-period ahead forecasting exercise, the calculations can be con-
ducted in either returns space or loss and profit space. It is straightforward to recover the target
quantile estimate of loss and profit from the quantile calculated from returns. Henceforth VaR
calculations may refer to either of the two.
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in the recent literature as a risk measure by Kou et al. (2013) and Kou and Peng

(2014). Kou et al. (2013) and Kou and Peng (2014) defined the median shortfall as

the median of the α tail distribution of Y . If Y has a cumulative distribution function

(cdf) F then

Fα(u) :=

 0, for u < V aRα;

F (u)−α
1−α , for u ≥ V aRα.

is the α-tail distribution then MSα(Y ) = F−1α (1/2) is the median shortfall. When

working with loss and profit distributions the risk measures are determined in the left

tail and then it has been proved that MSα(Y ) = V aRα
2
(Y ) for any critical level α.

2.2 A Critical Comparison of VaR, MS and ES

An axiomatic approach7 to derive risk measures under Basel 2 and Basel 3 is described

in Kou et al. (2013). There is an extensive literature comparing the theoretical

advantages and disadvantages of VaR and ES. The discussion is centered on whether

a general risk measure ρ satisfies the well-known coherence conditions (Acerbi, 2004;

McNeil et al., 2015) over the space of losses and profits (or equivalently returns)

Π = {Y : E(Y 2) < ∞}: monotonicity, that is for two positions with values such

that Y1 ≥ Y2 the risks are also ordered ρ(Y1) ≤ ρ(Y2); the sub-additivity or merger

risk reduction condition saying that ρ(Y1 + Y2) ≤ ρ(Y1) + ρ(Y2); homogeneity or

scaling of risk conditionρ(λY ) = λρ(Y ) for any λ ≥ 0; and the risk-free risk reduction

ρ(Y + a) = ρ(Y )− a for any a ∈ R that requires adding cash to reduce risk.

Apart from monotonicity all the other properties can be called into question8 from

7Farkas et al. (2014) analyse capital requirements for bounded financial positions based on Value-
at-Risk and Tail-Value-at-Risk acceptability and show that a theory of capital requirements allowing
for general eligible assets is richer than the standard theory of cash-additive risk measures. Moreover,
they highlight that general capital requirements display a wider range of behaviors in terms of
finiteness and continuity than classical cash-additive risk measures.

8It can be argued that the four conditions above reflect more risk preferences and as such the risk
measures should be understood in relation to various stochastic orders. In essence that means using
as a partial order among payoffs some stochastic order “�” such that the monotonicity condition
becomes Y1 � Y2 implies ρ(Y1) ≥ ρ(Y2), and then the risk measure ρ is called coherent with respect
to the stochastic order �. Rémillard (2013) highlighted that VaR is coherent w.r.t simple stochastic
order while ES is coherent w.r.t hazard rate order.Foster and Hart (2009) define a measure of riskiness
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a pure financial point of view. The sub-additivity condition has been introduced on

the basis that a merger cannot increase risk, see Artzner et al. (1999). However,

this may not be the case as the following heuristic example suggests. Assume that

a company A is taken over by a company B. Company A has 100 million dollars

liabilities serviced at LIBOR plus 1% based on their credit rating AA while company

B has 20 million dollars liabilities serviced at LIBOR plus 5%, again based on their

rating BB. After the merger the company B will have liabilities 120 million but since

they are not going to change their business model, their rating is roughly the same,

or maybe only slightly upgraded to BBB so when they will have to pay 100 million

dollars inherited from company A they will rollover their debt at LIBOR plus 4%.

From a risk perspective, their cost of financing has been improved by 1% on their

own 20 million but has deteriorated by 3% on 100 million dollars. This post merger

situation will improve only over time but not immediately and hence, the merger

leads to a company that is in a worse position than before. Garfinkel and Hankins

(2011) showed that cash flow uncertainties lead firms to integrate vertically so our

heuristic example is representative for risk management in mergers.

The homogeneity condition says that leverage increases risk only linearly. The

subprime crisis has taught us that this is not the case. The risk-free reduction implies

that adding cash to a risky portfolio must have the effect of reducing risk of that

portfolio by the same amount. This seems correct in a world where risk-free rates are

positive9 but this view has been contradicted recently by the negative nominal rates

in a series of countries such as EU, Japan and Switzerland.

The claimed superiority of ES over VaR was based on the verification of sub-

additivity property. However, it is worth mentioning that Garcia et al. (2007), Ibrag-

imov and Walden (2007) and Ibragimov (2009) demonstrate that actually VaR is

subadditive under the family of infinite variance stable distributions when the mean

of an asset that is detached from the decision maker.
9The proper condition seems to be defined still in Artzner et al. (1999) where due consideration

to the risk-free rate r is taken.
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return is finite. Danielsson et al. (2013) generalized those results and found suf-

ficient conditions for VaR to be subadditive in the relevant tail region when asset

returns have a multivariate regular variation, for both independent and cross sec-

tionally dependent returns provided the mean is finite. They propose an extreme

value theory-based estimator which corrects for most empirical subadditivity failures

because the results of extreme value theory ensure that, regardless of the underlying

distribution, when the distribution of returns is fat tailed, the asymptotic tail follows

a power law. Hence, this approach will produce estimated VaR value that are more

robust to the uncertainty associated to the target quantile, and therefore avoiding

greatly subadditivity violations. Dhaene and Salahnejhad (2015) remarks that ensur-

ing subadditivity in the tail region is conditioned on working sufficiently deep into

the tail, in order to be able to apply the Fellers convolution theorem. However, from

a practical point of view being deep inside the tail leads to a major decrease of the

number of observations which will increase estimation uncertainty.10 Dhaene et al.

(2006) proved that coherent risk measures can be too subadditive, that is they may

imply an increase of the shortfall risk in case of a merger.

Danielsson and Zhou (2015) reviewed the accuracy of risk forecasts as measured

by VaR and ES and they concluded that VaR is superior. They showed that for

longer horizons a half century of data is needed for standard estimators to satisfy the

asymptotic conditions, thus questioning the reliability of methodology promoted by

the BCBS. Cont et al. (2010) focused on computational stability to perturbations of

the model and concluded that the historical ES exhibits unavoidable instabilities11

that do not arise in the case of historical VaR, questioning whether ES is superior

ultimately to VaR. Ahn et al. (1999) described how an institution aiming to minimize

its VaR can achieve an optimal risk control using options, the cost/VaR frontier being

10 Dhaene and Salahnejhad (2015) investigated the sub-additivity of VaR and solvency capital
requirements for insurance line business and they observed that the uncertainty of VaR estimation
is not always monotonically increasing through the tail and it may change monotony as it goes
deeper into the tail.

11ES is much more sensitive to adding an extra data point than VaR, and it is also sensitive to
the size of the extra data observation.

10



linear. Kondor and Varga-Haszonits (2010) proved that if there is a pair of portfolios

such that one of them dominates the other in a given sample–and this occurs with

finite probability even for large samples–, then it is impossible to determine an optimal

portfolio under ES and furthermore the risk measure diverges to −∞.

Another argument frequently invoked in favor of ES is that VaR ignores the mag-

nitude of the losses greater in absolute value than VaR, so naked speculative positions

are not captured by VaR and hence allows the traders to take extreme risks. How-

ever, if the models used for risk management are poor in estimating tail risk then it

is better to use VaR rather than an ES measure contaminated with estimation risk.

Furthermore, in order to estimate reliably ES at the same level with VaR, a much

larger sample size is needed and moreover, the estimation of ES is computationally

more costly for fat-tailed distributions (Yamai and Yoshiba, 2005). Christoffersen

and Goncalves (2005) also confirmed that ES measures are generally less accurate

than VaR measures and the confidence bands around ES are also less reliable.

On the practical side the quality of a risk measure is qualified based on backtesting

against realised losses. Recently it has been proved (Gneiting, 2011; Ziegel, 2014) that

ES is not an elicitable measure of risk. It has been argued that this is equivalent to the

impossibility of backtesting ES. Since VaR is elicitable and hence backtestable, the

comparison with ES seems to have reversed. However, the lack of elicitability is not

proof that backtesting ES is impossible and McNeil et al. (2015), Du and Escanciano

(2016) describe feasible methods to backtest ES.

Davis (2014) showed that VaR is a consistent risk measure and it has theoretical

properties that ES does not have. In a similar vein to Diebold-Mariano tests, a risk

measure is categorised as performing well if a criterion depending only on realized

values of data and the numerical values of predictions, is satisfied in line with the

weak prequential principle of Dawid (1984) referring to probability forecasting. Davis

proves that the consistency of quantile forecasting is obtained under essentially no

conditions on the mechanism generating the data. Kou et al. (2013) argued also
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that MS is more robust than ES in terms of robust statistics tools such as influence

functions, asymptotic breakdown points and finite sample breakdown points and So

and Wong (2012) pointed out that MS is coherent when the losses or returns have

elliptical contoured probability distributions.

Some less-known properties that risk measures should have in general12 have been

described in Albanese and Lawi (2004). Here we select two of these properties. The

first one is called the irrelevance of positive gains and it is defined by requiring for

a random payoff with loss or profit X having zero mean that ρ(Y ) = ρ(min(Y, 0)),

so the risk is only represented by the negative return. It can be shown, see the

Online Appendix, that the cumulative distribution function of the negative part Z =

min(Y, 0) of a random payoff Y has the following cumulative distribution function

FZ(z) =

 1, if z ≥ 0;

FY (z), if z < 0.
(1)

where FY is the cumulative distribution function of Y . For a given critical level

α such as α = 5% or α = 1%, in general13, if FY (0) > α, it follows that the α-

quantile for Y is equal to the α-quantile for Z, because the corresponding cdf for

Y and Z are identical on the negative semiaxis of real numbers. This implies that

V aRα(Y ) = V aRα(min(Y, 0)) and since this identity is then true for any critical

level u < α it is also true that MSα(Y ) = MSα(min(Y, 0)), and using the known

formula linking ES to VaR, see(8) in the next section, it also follows that ESα(Y ) =

ESα(min(Y, 0)). However, if FY (0) < α then the α-quantile of Y is a positive number

and furthermore the α-quantile of min(Y, 0) does not exist therefore invalidating the

condition of positive gains for both VaR and ES. Nevertheless if it also happens that

FY (0) < α/2, then MSα(Y ) does exist and it is also equal to MSα(min(Y, 0)), so the

irrelevance of positive gains may still hold for MS14.

12More interesting theoretical properties are discussed in Foster and Hart (2009).
13Our condition is more relaxed than the condition of returns centered at zero required by Albanese

and Lawi (2004)
14If FY (0) > α/2 then the same technical problems presented for VaR also applies for MS.
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The second property is the relative diversification of risk is captured by the mono-

tonicity of specific risk and it says that if a position Y1 is cloned into independent

copies Y1, Y2, . . . , Yn, . . . then for any integers 0 < m ≤ n we have that

1

n
ρ(Y1 + Y2 + . . . Yn) ≤ 1

m
ρ(Y1 + Y2 + . . . Ym) (2)

so more positions of the same kind should reduce the risk per unit of trade. Here we

can prove the following result.

Proposition 2.1. If m and n are large enough, for any α ∈ (0, 0.5), V aRα and ESα

are both monotonic to specific risk.

A detailed proof is given in the Online Appendix. The benefit of reducing risk per

unit of trade may also occur when the distribution of payoffs is not related to the

normal distribution. For example, if Y ∼ Cauchy(µ, γ), one can prove–see the Online

Appendix–, that the condition (24) is satisfied for both VaR and ES, with equality.

Proposition 2.2. The risk per unit of trade does not always decrease with the increase

of number of trades of the same kind.

In Table 1 we collected the properties of the three main risk measures currently

being advocated in the literature by various schools of thought. Overall, we may

conclude that MS is at least as good a risk measure as ES while it is also more

flexible computationally.

[Table 1 about here.]

We would like to raise here another very important point regarding the veridicity

of a particular algebraic condition for a risk measure. Without loss of generality we

shall consider ES as an example of a risk measure and subadditivity as an example

of a required condition. It is known Acerbi and Tasche (2002); McNeil et al. (2015)

that ES verifies the subadditivity condition ESα(Y + Z) ≤ ESα(Y ) + ESα(Z) for
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any positions Y and Z. If we denote by ẼSα(Y ) the estimator of ESα(Y ) calculated

from a sample {Y1, . . . , Yn} then relative to given samples of data

ẼSα(Y ) = ESα(Y ) + εY (3)

ẼSα(Z) = ESα(Z) + εZ (4)

ẼSα(Y + Z) = ESα(Y + Z) + εY+Z (5)

It is possible to reverse the in-sample version of the in population condition, that is

ẼSα(Y + Z) > ẼSα(Y ) + ẼSα(Z) (6)

if the estimation errors from the respective samples come out such that

εY+Z − εY − εZ > ESα(Y ) + ESα(Z)− ESα(Y + Z) (7)

Since for various estimators of risk measures it is impossible to control the estimation

errors, for all practical purposes, it is impossible to guarantee that a required condition

is also satisfied across all samples. This also goes in reverse. A condition may fail

at the population level equivalent to assuming that there is no sampling error, but

the sample estimates may actually verify the condition, once again because of the

sampling errors ε. This is true for ES, for VaR, and for any other risk measure.

3 Model Validation of Risk Calculations

In this paper we shall assume that Xt represents the value at time t of an asset, such

as an equity index or a foreign exchange, and that the value of the asset at a fixed

horizon h can be described by a random variable Xt+h = Xte
Yt+h , where Yt+h denotes

the log-returns of the asset on the interval [t, t + h]. For risk management purposes

we are interested in the left tail of the distribution of the direct losses and profits
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Xt+h−Xt. For calculation purposes the central place is taken by the the distribution

of log-returns Yt+h, under various models.

Focusing the attention on the returns Y the VaR at some critical level α can be

conceptualised15 by the α-quantile of the distribution of returns F , with negative

sign. If the quantile qα is such that qα = −V aRα then the ES at the same critical

level is given by

ESα = − 1

α

∫ α

0

F−1(u)du (8)

Acerbi and Tasche (2002) proved16 that ESα = limn→∞− 1
bnαc

∑bnαc
i=1 Y[i:n], where

Y[i:n] represents the i-th order statistics in a sample of size n and bac denotes the

smallest integer not greater than a. Hence, a useful estimator17 of ES is given by

ÊSα = − 1

bnαc

bnαc∑
i=1

Y[i:n] (9)

3.1 Quantile Risk Measures and Distribution-Free Confidence

Intervals for VaR

In this paper we consider parametric models as well as a nonparametric approach

for estimating risk measures. For the former, we use the gaussian model, still widely

applied in the finance sector, as well a model better equipped to deal with fat tails

such as the NIG, which is representative for the Lévy models applied in finance (An-

dersson, 2001; Venter and de Jongh, 2002; Aas et al., 2006; Ghysels and Wang, 2014).

Moreover, given the well-known conditional heteroskedastic patterns in financial re-

15We can assume without loss of generality that the cumulative distribution function F for the
log-returns is absolutely continuous with a probability density f .

16For a more precise calculation from a sample of returns data {Y1, . . . , Yn}, because the empirical
distribution function generated Fn(u) = 1

n

∑n
i=1 1{u≥Yi} is not invertible, Inui and Kijima (2005)

suggested to employ the lower empirical distribution value given by the piece-wise constant function
equal to Y[k:n] order statistic when k−1

n < α ≤ k
n . This gives a direct estimator for V aRα as −Y[k:n]

but this estimator is known to carry a positive bias for small critical levels α.

17 Danielsson and Zhou (2015) point out that quantile estimators are biased in small samples. In
our paper all samples are large enough to avoid this bias and we prefer to use quantile estimators
for which we can construct confidence intervals and therefore be able to quantify the uncertainty of
parameter estimation.
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turns, we also take into account additional models such as the GARCH(1,1) and the

GJR-GARCH(1,1) with normal innovations. Many banks seem to prefer model free

approaches18 since it is unlikely that a family of models will perform well across all

asset classes and will be able to cover new emerging asset classes.

In order to derive nonparametric market risk measures for an investment let us

assume that the log-returns of the asset are characterised by an arbitrary continuous

and strictly increasing cumulative distribution function Yt+h|Ft ∼ F . Then, the daily

VaR and the daily ES at horizon h and critical level α can be computed as follows

V aRnonp
t (Xt+h −Xt) = Xt −Xte

F−1(α) (10)

ESnonpt (Xt+h −Xt) = Xt −
1

α
Xt

∫ F−1(α)

−∞
eY dF (Y ). (11)

VaR and ES can be conceptualised as functions of the α-th quantile of the distribution

of the asset returns, which is notoriously difficult to estimate. Nevertheless, having a

sample of past returns of the asset available, it is possible to estimate F−1(α) relying

only on the sample quantile y[bnαc:n], i.e. a nonparametric approximation. Thus, VaR

and ES can be estimated as follows:19

V̂ aR
nonp

t (Xt+h −Xt) = Xt −Xte
F̂−1(α) = Xt −Xte

y[bnαc:n] (12)

ÊS
nonp

t (Xt+h −Xt) = Xt −

[
1

bnαc
Xt

n∑
i=1

eyi1{yi∈[y[1:n],y[bnαc:n]]}

]
. (13)

VaR measures estimated according to formula (12) are subject to sampling esti-

mation error. One possibility in dealing with this issue is to construct, for example,

a 95% confidence interval for VaR20. Assuming that the true risk measure lies inside

the confidence interval, the only inference one can make is that it can be any point

of the interval. The order statistics calculus allows the construction of a distribution-

18O’Brien and Szerszen (2014) describe a sample of U.S. banks for which VaR and ES are calcu-
lated. From this sample 60% employ the nonparametric or historical simulation method.

19Chen (2008) proposed ÊSα = −Y [κ:n] as a valid estimator of ES, with k = nα+ 1.
20Gupta and Liang (2005) estimated confidence intervals for VaR using profile likelihood methods.
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free confidence interval for quantiles, and hence for VaR measures. This approach

has been pioneered in the risk management literature by Dowd (2006, 2010) and it

is expanded on here. An important result from order statistics (David and Nagaraja,

2003) is that for any 1 ≤ i1 < i2 ≤ n

Prob
(
Y[i1:n] ≤ qα ≤ Y[i2:n]

)
=

i2−1∑
j=i1

(
n

j

)
αj(1− α)n−j. (14)

While this result can be used to determine directly a distribution-free confidence

interval for VaR, there may exist several combinations of order statistics Y[i1:n], Y[i2:n]

that make the probability in (14) equal to the desired confidence level. One can

apply the approach by Hutson (1999) that allows to identify the optimal sample size

in order to get significant confidence intervals and to select the optimal21 pairs (i1, i2)

once n and α have been fixed.

Here, we propose to construct distribution-free confidence intervals at 1− β level

for VaR of an investment in an asset using yi1 = Y[i1:n] and yi2 = Y[i2:n] satisfying

Prob (yi1 ≤ qα ≤ yi2) = 1− β

CI
V aRnonpt
1−β (Xt+h −Xt) = (Xt −Xte

yi1 , Xt −Xte
yi2 ) (15)

3.2 Parametric Confidence Intervals for VaR

The order statistics calculus provides additional tools when the returns of the asset

are assumed to be distributed according to a certain parametric law F .

If F[i](u) = P (Y[i:n] ≤ u) is the cumulative distribution function of the i-th order

statistic then F[1](u) = 1− [1−F (u)]n and F[n](u) = [F (u)]n. The distribution of the

order statistics of any order j can be derived (David and Nagaraja, 2003) as

F[j](u) = BF (u)(j, n− j + 1) (16)

21Optimal here means that the distance between i2 and i1 is minimal.
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where BU(a, b) =
∫ U
0 ta−1(1−t)b−1dt

B(a,b)
is the incomplete beta function and B(a, b) is the

beta function. Thus, the probability density function of the j-th order statistics is

f[j](u) =
1

B(j, n− j + 1)
F j−1(u)[1− F (u)]n−jf(u) (17)

where f is the corresponding density to F .

Once a parametric distribution model is specified for the returns of the asset, one

can derive not only confidence intervals but also the entire distribution associated

with the VaR measure. For example, if f is gaussian or NIG, we can simply replace

their formulae in (17) and obtain the formula of the density of the corresponding VaR

estimate. In this way the risk manager can determine how uncertainty around VaR

is distributed. A confidence interval will assume that all values inside the interval are

equally likely, whereas seeing the probability density function allows a better assess-

ment of risk. On the other side, confidence intervals give a simple and straightforward

assessment of model risk related to the estimation of VaR. For this reason we derive

the expressions for the confidence intervals at 1− β level for VaR of an asset:

CI
V aRnonpt
1−β (Xt+h −Xt) =

 Xt −Xte
B−1
F (β/2)

(bnαc,n−bnαc+1),

Xt −Xte
B−1
F (1−(β/2))

(bnαc,n−bnαc+1)

 . (18)

3.3 A Measure of Unexpected Losses

If VaR is estimated based on22 the order statistics Y[v:n], there is a direct advantage

to estimate the median shortfall (MS) from the truncated sample Y[1:n], . . . , Y[v−1:n],

which is already an ordered sample. Estimating both the expected losses and the

unexpected losses as a quantile measure at different orders allows the calculation of

the bivariate joint distribution of (Y[κ1:n], Y[κ2:n]) where κ1 = n× α1 and κ2 = n× α2,

22When v is even then the estimate of the median shortfall is Y[v/2:n] and when v is odd then the

sample estimate is 1
2

[
Y[(v−1)/2:n] + Y[(v+1)/2:n]

]
. A simpler estimator is to always consider Y[bv/2c:n]

as the median shortfall estimate and henceforth we will use this simpler estimator in order to treat
the MS as a quantile.
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respectively. This distribution is

F[κ1,κ2](u, v) =
n∑

k=κ2

κ∑
s=κ1

n!

s!(k − s)!(n− k)!
[F (u)]s[F (v)− F (u)]k−s[1− F (v)]n−k (19)

for any u < v. This implies that any two quantile order statistics estimators at

different critical levels are not independent. Hence, in risk management terms, it is

better to look at VaR and MS as a pair of tools for gauging risk.

For capital requirements purposes we consider using the excess difference between

the MS estimate and the VaR estimate. This measure will account for the reserves

that a bank will need to carry to safeguard from unexpected losses. We believe that

VaR is indicative for market risk under normal market conditions and this “expected”

risk should be mitigated on a day to day basis by adjusting the positions on the bank’s

balance sheet. It is a watermark system that is negotiated daily by repositioning on

the market. For the unexpected losses, for example being long on S&P 500 in 2008,

only capital reserves in cash or very liquid assets could have mitigated against those

sudden losses caused by the equity crash.

The MS sample estimate being an order statistic, denoted henceforth by Y[m], with

m < v, drives the capital requirements reserves that should be deposited. The actual

capital requirements measure is determined by the negative of the difference

D =
(
Y[v] − Y[m]

)
(20)

accounting for unexpected losses. Our approach is reminiscent of the ∆CoVaR ap-

proach of Adrian and Brunnermeier (2016) for quantifying systemic risk and of Col-

letaz et al. (2013) who validate risk models looking at stressed values of VaR. The

measure defined in (20) uses a different critical level from the quantile order used in

the ∆CoVaR which takes v = 0.5 whereas we use α� 0.5, and it is also by definition

not the same as the risk map measure described in Colletaz et al. (2013) where m

takes a series of values in order to create a vector of stressed VaRs, whereas our m
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comes out by calculation to be precisely equal to v/2.

If Y[m] = z and Y[v] = y then D = y − z then using the order statistics calculus

the distribution of D is given by the density

q(d) = K

∫ ∞
−∞

Fm−1(z) [F (z + d)− F (z)]v−m−1 [1− F (z + d)]n−v f(z)f(z + d)dz

(21)

where K = n!
(m−1)!(v−m−1)!(n−v)! is just a normalising constant factor. The probability

density presented in equation (21) can be used to construct the p-value for the measure

D of unexpected losses. For a given model represented by the cdf F , the p-value of

observing a given value D = d is equal to

PF (D ≤ d) =

∫ d

0

q(u)du (22)

If this p-value shows that the observed data is in the extreme tails of the density given

in (21) then the risk manager or the regulator can reject the model used to capture

unexpected losses. This tool can be very useful to monitor model performance and

hence our methodology can also be applied to risk measures calculations for a single

asset or a portfolio, across business units or for a bank, insurance company, hedge

fund and it can also be applied to credit risk calculations, in a similar vein to Wilkens

and Predescu (2015), where Value-at-Risk-type measures are sought for losses over a

one-year capital horizon at an extreme tail (99.9%).

4 Data Description

In this section we describe the data used in this paper. For our empirical application

we consider the daily time-series of S&P500 and the USD/GBP exchange rate over

a thirty year time period 02/01/1984 − 10/07/2014. For the USD and GBP risk-

free interest rates we used the middle rate on 3-months deposits determined on the

Eurocurrency market.
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The analysis focuses on three risk measures: VaR, ES and MS at 1%, 2.5% and 5%

level, along with the 95% confidence intervals for VaR and MS obtained according

to the theoretical approaches explained in the previous section. The data for the

empirical analysis have been retrieved from Thomson Reuters Datastream.

We develop our analysis by using a daily rolling window approach with a window of

520 days (roughly two years) for the estimation of the relevant parameters. The choice

of a rolling window of 520 days is not casual; beside the fact that the Basel Accord

suggests to use a sample size of two years in VaR estimation, we actually checked

the appropriateness of such window size following the approach of Hutson (1999).

In Figure 1 we plot the quantiles used in order to derive the 95% distribution-free

confidence intervals for VaR and MS and it appears that after 520 days the model-free

confidence intervals begin to stabilize. Hence, roughly two years of daily data seems

to be the minimum sample size a risk manager should use in order to be able to asses

the uncertainty of risk estimates23.

[Figure 1 about here.]

We derive risk measures by modeling the log-returns of the S&P 500 and of the

USD/GBP exchange rate according to five different models: the nonparametric i.i.d.

model, the gaussian distribution model, the NIG distribution model, the GARCH(1,1)

model and the GJR-GARCH(1,1) model with gaussian innovations. Ornthanalai

(2014) pointed out Lévy models may be superior to standard gaussian models as as-

set pricing models. Here we explore whether the same is true from a risk management

perspective. The usefulness of this approach is gauged by performing a battery of

backtests for the estimated risk measures and their extensions counterparts that in-

clude model risk. Subsequently we discuss how model risk can be taken into account

in the computation of capital requirements.

23Greater accuracy can be achieved at the expense of increasing the sample size. This may not be
possible for the majority of assets traded on financial markets so we preferred using a sample size
that can be applied more widely in practice.
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5 Selecting Risk Measures and Models

5.1 The Order Statistics Approach

In Figures 2–3 we show, for a long position on the S&P 500 and a long position

on the USD/GBP exchange rate, the time series of the nonparametric VaR and the

nonparametric MS at 1% and 5%, along with their 95% distribution-free confidence

intervals. For both assets the higher the critical level at which the two risk measures

are computed the narrower is the confidence interval, as more information regard-

ing the left tail of the asset returns distribution is exploited. Our newly proposed

distribution-free confidence interval based on quantiles is able to capture very well the

non-parametric point estimate of all three risk measures, both in normal times and in

turbulent times. Our analysis confirms the conclusion of Danielsson et al. (2016) that

during calm periods various risk models produce close forecasts, therefore rendering

model risk as small, while during market distress model risk increases significantly.

[Figure 2 about here.]

[Figure 3 about here.]

In Figure 4 we plot the time series of the nonparametric ES and the nonparametric

MS, the two competing tail risk measures, at 1%, 2.5% and 5%. We notice that, for

all assets investigated, the MS is generally smaller than the ES in normal times, but

during crises MS may exceed the risk levels indicated by ES, particularly at the 1%

critical level. This is clearly true for the crisis that followed the subprime debacle

of 2007 for equity and FX asset classes. The equity crisis of Black Monday 1987 is

rather interesting, with the MS indicating a much lower level of risk than the ES

risk measure. A possible explanation of the sources24 of this event indicate that this

particular case was exogenous to the equity market.

24 In August 1987 the Dow Jones index was trading at 2722 points which was 44% over the
previous year’s closing of 1895 points. On October 14, the Dow Jones index dropped 95.46 points
to 2412.70, and another 58 points the next day, down over 12% from the August 25 all-time high.
During this period the United States was engaged in a war with Iran and on Thursday October 15,
1987, Iran hit an American-owned supertanker with a missile. The next morning, Iran hit another
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[Figure 4 about here.]

On the other hand, on the currency market the Black Wednesday event of 16th

September 1992, when the British government withdrew the pound sterling from the

European Exchange Rate Mechanism, was an endogenous25 market risk event. The

graph in Figure 4 reveals that, for the USD/GBP exchange rate, prior to this event

the MS at 1% was consistently above the ES at 1% for a significant period of time,

suggesting perhaps that an extreme event was likely. After this event occurred the

MS is equal to ES at all three confidence levels. This evidence supports our choice of

using the MS as proper measure of tails risk.

The graphs in Figure 4 suggest that MS is a better measure of risk than ES since

it is less conservative in good times and it can signal higher levels of risk before

crises. However, nonparametric calculations for risk measures may not be feasible

for all asset classes since nonparametric estimation requires large samples of data.

The question with using parametric models is which model is appropriate. Should

banks and financial institutions rely on the gaussian distribution given the high level

of applicability and small number of parameters to estimate or should they consider

some of the more recent distributions/processes advocated in the markets such as

Lévy processes? Or is it better to bring into play the GARCH family of models?26

In this paper we shall compare these approaches and conduct later on backtesting in

order to identify the correct procedure for the assets investigated.

American ship with another missile. On Friday 16 October, all the financial markets in London were
closed due to the Great Storm of 1987. The Black-Monday crash began unfolding like a tsunami
from the Far Eastern markets on the morning of Monday October 19. Hence, the first to take action
were traders in Asia and only afterwards reaching London and European countries on its way to
the U.S. Over this time two U.S. missiles bombarded an Iranian oil platform in retaliation to Iran’s
previous missile attacks. The programme trading invoked in the risk management literature most
likely created the exposure for the event to impact, it was likely not the cause. This is a perfect
example where stock market risk (programme trading) was bundled with political risk (the US-Iran
war) and catastrophic risk (insurance losses caused by the Great Storm were estimated at $2 billion).

25 The event that the UK government suspended Britain’s membership of the European Exchange
Rate Mechanism was endogenous. On the other hand the fact that the Chancellor Norman Lamont
raised interest rates from 10% to 12%, then to 15%, and authorised the spending of billions of pounds
to prop up the sterling could be also seen as an exogenous event to the FX markets.

26Note that since GARCH models are not i.i.d it is not possible to apply the approach presented
in this paper based on the order statistics and the analyst must then rely solely on the backtesting
exercise in order to validate the model.
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We illustrate in Figure 5 and Figure 6 the historical evolution of market risk as

represented by VaR and the tail risk as represented by MS, under calculations based

on the gaussian distribution and the NIG model, at 1% critical level 27. The confi-

dence interval based on order statistics that we advocate in this paper can be used

as a model screening tool in risk management. The results presented in Figure 5

show that, under the gaussian model, the non-parametric measures of risk lie outside

the confidence bands, particularly in the stress periods. This does not happen when

similar calculations are performed under the NIG distribution (Figure 6), suggesting

that this particular case of the Lévy distribution is much better suited to risk mea-

suring calculations. Furthermore, as we can see from the results depicted in Figure 5

the level of risk in comparative terms seems to be underestimated by the gaussian

distribution.

[Figure 5 about here.]

[Figure 6 about here.]

One great advantage of being able to calculate confidence intervals for the point

estimates of the risk measures is that we can use the intervals boundaries to introduce

a measure of model parameter estimation risk and to adjust easily risk calculations for

this type of model risk. Thus, following our approach parameter estimation risk can

be easily accounted for and risk measures can be easily adjusted for this additional

risk, as requested by regulators.

5.2 Model Validation For Unexpected Losses

When the distribution of the returns is available analytically we can derive the den-

sity function and the cumulative distribution function of the difference between the

VaR and the MS order statistics estimators. The algebraic details are provided in

27A wider range of empirical results including similar calculations for risk measures estimated at
5% critical level are available from the authors upon request. These results are analogous to those
obtained for risk measures estimated at 1% critical level.
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the Appendix. This tool allows us to compute the p-values under the null hypoth-

esis that the observed differences between the VaR and the MS estimates belong to

the conditional distribution. In this way it is possible to assess whether the model

envisaged for the distribution of the asset returns is appropriate or not for capturing

unexpected losses. To this end we compute the p-values as series of probabilities

P (D ≤ d), where d represents the realized difference representing unexpected losses,

and we validate the model as being correct for measuring unexpected losses, at the

critical level 5%, if these p-values are consistent between 2.5% and 97.5%, and reject

the model when these p-values are either below 2.5% and larger than 97.5%.

[Figure 7 about here.]

The graphs in Figures 7 show28 the p-values obtained for the unexpected losses

measure as calculated with the gaussian distribution and the NIG distribution, re-

spectively. We can infer unequivocally that the NIG distribution is superior in terms

of capturing unexpected losses using the VaR and MS as pointwise risk measures.

The gaussian distribution has far too many observed losses in the extreme of the

distribution of the measure of unexpected losses D indicating a disconnect between

the way the gaussian model forecasts both expected and unexpected losses.

The tool described in this section is the first one in the literature, to our knowledge,

that facilitates model validation looking at both expected and unexpected losses.

Furthermore, given that various methodologies for measuring systemic risk29 is based

essentially on the difference between the median, which is the VaR at α = 50% and

a stressed VaR at α = 1%, it seems feasible to adapt our tool for model validation

in the context of systemic risk measurement as well. Since in Colletaz et al. (2013)

a standard VaR and a stressed VaR at very low alpha such as 0.1% are employed

to control the quality of risk measures, it seems feasible to adapt our tool for model

28Similar graphs for the 5% VaR and MS, depicting a similar outcome that the NIG is a superior
risk management model, are available from the authors upon request.

29Excellent reviews of these methodologies are contained in Danielsson et al. (2016) and Bisias
et al. (2012).
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validation to this framework. The model validation exercise may be applied to market,

credit, operational, or systemic risk estimates, and even to assess the performance of

the margin system of a clearing house.

6 Backtesting

Backtesting is very important in risk management, particularly for the regulator. We

are going to apply a battery of backtesting procedures –including the FOEL test, Ku-

piec’s POF Test, Christoffersen’s Independence Test and Christoffersen’s Conditional

Coverage Test– to identify the method that is most consistent with the significance

level. The Christoffersen’s Independence test proposed by Christoffersen (1998) tries

to handle the clustering of violations relying on a simple first-order Markov sequence.

Christoffersen and Pelletier (2004) suggested a more sophisticated approach that takes

into account the duration of time between consecutive violations. Later Berkowitz

et al. (2011) extended this methodology to define a new Conditional Coverage Test.

Engle and Manganelli (2004) proposed the dynamic quantile Conditional Coverage

test30 that allows instead to check high-order dependence. The backtests that have

been described so far permit to evaluate the performance of a model for the calcula-

tion of VaR at a certain critical level (e.g. 1%). Pérignon and Smith (2010) proposed

a multivariate generalization of the Kupiec’s POF Test that allows instead to assess

the accuracy of a model at any critical level. According to this multivariate uncon-

ditional coverage test, a vector of VaRs having same horizon but different coverage

probabilities can be backtested jointly.

The backtesting results presented in Tables 2-3 indicate that for S&P500 the best

methods are the VaR at 5% calculated with the GJR-GARCH-N distribution and

the MS at 1% calculated with the NIG distribution.31 For the USD/GBP rate, from

30To implement the test we follow Engle and Manganelli (2004), Dumitrescu et al. (2012) and
Subba Rao et al. (2012)

31If the regulator insists on a specific critical level like 1% and a specific measure like VaR then
the best methods are the historical and the NIG, adjusted for model risk.
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Tables 4-5 it can be concluded that VaR at 1% computed with GARCH(1,1) model

and the MS at 1% calculated with the NIG distribution performed the best.32 Hence,

both VaR and MS can be reliable measures of market risk, at different confidence

levels, and the NIG model seems to be a reliable model. Adjusting for model risk

leads to more conservative measurements but our backtests indicate that overall this

may be more desirable than working with GARCH models. Investors may prefer

GARCH models as they may be less risk averse than a regulator and hence they are

happy to work with VaR at 5%. On the other hand the regulator is more conservative

by definition and she may prefer to work with MS at 1%. The rejection of the

gaussian model is hardly surprising, confirming recent results using desk-level data,

see Berkowitz et al. (2011). The results of the Pérignon and Smith Test in Table 6

suggest that the NIG distribution is an accurate model for the estimation of VaR

and MS for both assets, while the nonparametric model works well for VaR and MS

related to the USD/GBP exchange rate. This set of results emphasize that taking into

consideration the uncertainty surrounding the risk measure calculations is equivalent

to more conservative market risk estimation. While it may be tempting to suggest

that all one needs to do is to use VaR at a more stringent critical level, the results

need to be validated by backtesting.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

32In each table we compared the performance on different rows and retained those model/risk
measure/critical level that had passed the largest number of backtests and with the most stars.
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7 Capital Requirements

In the aftermath of the unprecedented cascade of financial crises over the period 2007-

2011–subprime, liquidity, Libor, sovereign– new regulations have been developed to

improve capital requirement calculations BCBS (2010, 2011). The role of capital

requirements is to disincentivize bank shareholders from buying risky assets in order

to capitalise on underpriced government bailout guarantees (Rochet, 1992). It is

important to be able to gauge the appropriate level of capital requirements since

undercapitalization harms profitable growth opportunities and the capitalization of

a bank will be ultimately driven by the net impact of capital levels on the default

option and the franchise value, as demonstrated by Barone-Adesi et al. (2014). We

claim that capital requirements should be set in such way to cover expected losses

as well as unexpected losses, caused by unforeseeable events, in order to ward off a

possible default. At the same time, capital requirements should not be excessively

conservative to allow banks to efficiently exploit the available resources.

7.1 Model Comparison of Capital Requirements Calculations

In what follows we develop a comparative analysis focusing on capital requirements

obtained according to the currently in effect BCBS regulation, looking at expected

losses and unexpected losses, and also considering the effect of adjustments for pa-

rameter risk estimation. Capital requirements should be considered (Cuoco and Liu,

2006) jointly with backtesting procedures to induce financial institutions to report

the level of risk they take and to manage this risk by having adequate levels of cap-

ital. The reform ongoing regarding the capital reserves regulatory framework (Basel

2.5 and Basel 3) introduced some changes in the computation of market risk capital

reserves. The banks must meet, on a daily basis, a capital requirement defined by

CR = max
{
V̂ aRt−1, k · V̂ aRavg

}
+max

{
ŝV aRt−1, ks · ŝV aRavg

}
(23)
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where V̂ aRt−1 is the previous day VaR estimate, computed at 1% level and with an

horizon of 10 working days (two weeks), V̂ aRavg is the average of the daily VaR on

each of the preceding sixty business days, computed at 1% level and with an horizon

of 10 working days, k is a multiplication factor subject to an absolute minimum of 3,

ŝV aRt−1 is the previous day stressed VaR estimate, at the same level of confidence

and same horizon. The stressed VaR has to be computed using historical data drawn

from a continuous 12-months period of significant financial stress relevant to the

bank’s portfolio. Ignoring for a moment the stressed VaR, it is worthwhile to make

a comparison between capital requirements defined on the basis of the first term

of formula (23) and our measure of unexpected losses adjusted for parameter risk

estimation. We are going to show that, even when ignoring stressed scenarios, the

regulatory capital requirements are excessive.

Figure 8 show the two-week losses, the expected losses (computed according to

the nonparametric VaR), the unexpected losses (calculated on the basis of the non-

parametric MS), the unexpected losses adjusted for parameter risk estimation (i.e.

the upper part of the 95% confidence interval for the nonparametric MS) and the

capital requirements computed according to BCBS regulation ignoring stressed sce-

narios (first term of formula (23)) for an investment of $100 in the S&P 500 and in

the USD/GBP exchange rate. The unexpected losses adjusted for risk estimation are

obtained as the upper part of the 95% confidence interval for the MS. More results

are presented in the Appendix. The measure of unexpected losses adjusted for pa-

rameter risk estimation obtained under the nonparametric model are generally more

conservative that those computed under the NIG assumption, especially in the two

years following the 1987 stock market crash. The nonparametric method leads to a

period of overhang in the aftermath of a market crash such as 1987, an undesirable

characteristic since less immediate risk follows after a crash, as discussed in his papers

by Dańıelsson and his co-authors. This is not true in the case of the NIG model.

Recall that BCBS capital requirements as indicated in Figure 8 are calculated by
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discarding the second term of formula (23). Generally the stressed VaR is at least

equal or greater than the current VaR. Because stressed VaR values are left out, the

actual capital requirements computed according to the BCBS directives are at least

double than those exposed the figures. The difference between the imposed Basel

calculations and the values derived under a robust model such as NIG are not only

economically and statistically significant, they are very large, persistently over time.

This analysis implies that the currently in effect BCBS regulation is excessively

conservative, which is to an extent paradoxical since, as observed by Hart and Zingales

(2011), governments may relax very stringent capital requirements when a bank is

exposed to bankruptcy, in order to avoid political pressure. One possible explanation

is that BCBS is actually not subordinated to any government and they want to be

seen as being conservative towards risk. Baker and Wurgler (2015) emphasized that

capital requirements do increase cost of capital, consequently creating a disadvantage

for the regulated banks vis-a-vis the shadow banks. Furthermore, if banks are required

to maintain more capital than necessary, the risk is shifted onto the shareholders, as

pointed out by Admati et al. (2013); Admati and Hellwig (2013).

[Figure 8 about here.]

The capital requirements calculations under the NIG model reflect a more stable

analysis. Adjusting for model risk under this model provides sufficient capital to cover

all losses during our almost twenty five year period, except the Black Monday 1987

for equity and the event of Britain leaving EMU in 1992, both events being entangled

with political decisions. At the same time, a system based on capital requirement

adjusted for model risk under the NIG model would have had sufficient capital to

cover the large losses during the dot-com crisis of 1999-2001 and also the Lehman

Brothers collapse in 2008, both events emerging from an endogeneized market risk.

Furthermore, the expected losses risk measure as quantified through VaR performed

very well across time overall to cover non-extreme losses, confirming current views in

the literature supporting this measure of risk, see Davis (2014). For unexpected losses
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we need an additional risk measure to work in tandem with VaR, and the measure

we advocated, MS, is flexible enough to capture unexpected losses.

Our findings lead us to argue that, when imposing appropriate assumptions on the

distribution of asset returns, our measures of unexpected losses adjusted for parameter

risk estimation are a valuable starting point in order to define a capital requirements

scheme that allows banks to hold a reasonable buffer of reserves and to employ at

most the available resources in productive activities.

7.2 Social Significance of Miscalculations

The BCBS excessive capital requirements induce losing interest on money locked in

buffer accounts. The analysis presented here shows the costs related to holding capital

requirements computed according to the BCBS regulation33 versus the calculations of

capital requirements determined on the basis of our measures of losses. For simplicity

we assume an initial investment, buy and hold, of $100 in the S&P500 and in the

GBP. These costs are calculated according to the following procedure: each day

we compute the difference between BCBS capital requirements and the maximum

between the realized 10-day losses and our measures for losses. When the difference

is negative there is a drawdown from the buffer account to cover realized losses. This

happens rarely. Most of the time the difference is positive, and for all those days, we

calculate the interests accrued on this amount, with daily compounding, with respect

to the US dollar 3-month deposit middle rate with continuous compounding. The

final numbers show the total amount of interest that could have been earned from a

money market account paying interest at the risk-free rate.

Table 7 provides the summary of these calculations for all five models and it also

shows the number of times in which the realized 10-day losses exceed the BCBS

capital requirements given only by the first term of the formula (23). Over the

period 02/01/1984−10/07/2014 for the USD/GBP rate the BCBS capital requirement

33Note that only the first term in formula (23) is used. Hence, in reality the costs are even higher.
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threshold (unstressed) is not breached by any 10-day loss. On the equity side, for

S&P500, the BCBS capital requirement threshold (unstressed) was insufficient to

cover 10-day losses only on four days, for all models except the NIG when there

is only one instance of a loss higher than the capital buffer. The GARCH models

seem to be the most exposed to large losses, more conservative risk managers perhaps

being tempted by the nonparametric historical simulation approach. The level of

cumulative lost interest varies between 21.90% and 41.86% for equity and between

24.63% and 26.62% for foreign exchange.

When comparing the performance of risk measures from a frequency coverage per-

spective we can observe that the NIG model does a great job. Great savings can be

achieved using this model, roughly 40% in equity space and 25% in foreign exchange

space. Given that over the period of our study the stock market capitalization in-

creased from 3 trillion USD to almost 20 trillion USD, we can see that a lot of capital

can be saved and be used in other parts of the economy. The percentage is smaller

for the foreign exchange but, according to the BIS, as of January 2014, the foreign-

exchange trading increased to an average of $5.3 trillion a day.34 Great savings can be

achieved by safeguarding against risk more efficiently in the financial markets based

on robust tested methods. In addition, as Kashyap et al. (2010) and Hanson et al.

(2011) observed, given the intensity of competition in financial services, higher capital

requirements will dislocate a larger share of intermediation into the shadow banking,

which will tilt the plain level field in financial sector.

How much money a bank should keep as a buffer against future losses is far from

a trivial questions. Allen et al. (2011) highlighted that although banks had between

1990s and 2000s capital levels well above the regulatory mimimums, the impact of the

financial crises that started with the subprime crisis of 2007 points out that perhaps

banks were in fact undercapitalized vis-a-vis a social safety level. A possible solution

as suggested by Allen et al. (2011) could be for banks to manage risk not by holding

34This figure includes all currencies.
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capital but by increasing their loan rates.

[Table 7 about here.]

8 Summary and Concluding Remarks

In this paper we propose a framework for incorporating model risk related to the

estimation of some standard and some new market risk monitoring and validation

tools. We extended the approach proposed by Kerkhof et al. (2010) by using quantile

risk measures for which one can derive confidence intervals. In addition, we employ

the distance between MS and VaR as a reliable measure of unexpected losses that

should be covered by capital reserves. Our improved methodology delivers extended

risk measures embedding model risk that are ratified through several well-known

backtests. We propose a new backtesting tool that can be used to validate both the

risk measure and the risk model with respect to unexpected losses.

Important crash-like events such as Black Monday 1987 or Black Wednesday 1992

when Britain’s exited from EMU led to an immediate ballooning of risk measures

and to an overhang level of high risk for a significant period of time. These losses

were caused by political events to the equity and foreign exchange markets and one

cannot expect VaR, as a measure of expected losses, to capture them endogenously.

The dot-com bubble crisis of 1999-2001 was an endogenous risk event of a longer

duration. Our MS calculations signalled correctly an imminent market crash.

Our model validation tools can be helpful to investment banks, hedge funds but

also to regulators in order to differentiate among competing risk models. The simple

gaussian model is totally inadequate to deal with unexpected or extreme losses. At

the same time the NIG model is clearly superior to other common approaches and

adjusting for model risk may also improve backtesting overall. In addition, the NIG

model produced higher levels of risk forecasts than those produced by the gaussian

model, indicating that using the latter may grossly underestimate risk. Furthermore,
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for the NIG model is more sensitive to tail risk as the associated MS and ES time

series suggest. We conjecture that skewness should play an important role in risk

management and different risk measures may be used for different asset classes.

VaR calculations are still important and they cover, as they should by definition,

expected losses while tail measures such as MS (or ES) are meant to gauge unexpected

losses. ES is a risk measure that can be influenced by extreme losses caused by rogue

trading, for example, and it is more difficult to compute and backtest. MS is a tail

risk measure that is easier to calculate than ES and is not subjected to the estimation

error of VaR as a threshold of expected versus unexpected losses. Taking into account

that ES is difficult to backtest in general while MS being a quantile-type measure is

not, our recommendation is to focus on the VaR and MS as risk measures and allow

banks to select their internal models that should be validated on their portfolios. No

single model seems to pass all backtests applied for the two main markets, equity

and foreign. The NIG model has had the best performance overall associated with

the data included in this paper. It is likely that there is no model that will pass all

backtests all the time. Thus, model selection and adjusting for parameter estimation

is a very important exercise in risk management that must be carried out internally

by banks on a regular basis.

In addition, comparing capital requirements recommended by the Basel 3 regu-

lation with our estimates of losses adjusted for parameter risk estimation, we find

that the former are excessively conservative, whilst the latter is a flexible alternative,

not difficult to implement and interpret. In our view, capital reserves computed on

the basis of our measures of unexpected losses adjusted for parameter risk estimation

allow to deal better with the trade-off between the threshold related to loss exceeding

capital requirements and the cost of impeding banks in their operations by charging

high regulatory reserves.

Our criticism of the current set of regulations imposed by regulators is not sin-

gular (see Kerkhof et al., 2010). Vallasca and Hagendorff (2013) evaluated the risk
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sensitivity of minimum capital requirements and found evidence of ill-calibration to

a market measure of bank portfolio risk. The amount of capital that may get locked

over time due to extra-conservative regulatory measures may reach trillions of dollars

as an order of magnitude. The society will benefit from these policies by avoiding a

repetition of the recent crises, but it may also suffer from lack of liquidity available

in other non-banking areas.

Dimson and Marsh (1995) compared the initial three main approaches for com-

puting capital requirements: the comprehensive approach of the U.S. Securities and

Exchange Commission, the building-block approach required by the European Com-

munity, and the portfolio approach proposed by the United Kingdom. Relative to

a large sample of equity trading books from U.K. they show that the portfolio ap-

proach is by far superior to the other two approaches, increasing capital requirements

when the risk is high and lowering them when the risk was low. On the other hand

Jokivuolle et al. (2014) provided a rationale for maintaining risk-based capital require-

ments higher in good times and lowering them in bad times. The capital requirements

BCBS methodology may require a more thorough analysis of its design.
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Figure 1: Quantiles used in order to derive the 95% distribution-free confidence in-
tervals for VaR and MS
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Figure 2: Time series of the nonparametric VaR and the 95% distribution-free
confidence intervals for VaR of a long position on the S&P 500 and a long position
on the USD/GBP exchange rate. Risk measures and their bounds are expressed as a
proportion of spot prices and are computed at 1% and 5% level.

(a) Nonparametric VaR and 95% DFCI for S&P 500

(b) Nonparametric VaR and 95% DFCI for USD/GBP
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Figure 3: Time series of the nonparametric MS and the 95% distribution-free con-
fidence intervals for MS of a long position on the S&P 500 and a long position on
the USD/GBP exchange rate. Risk measures and their bounds are expressed as a
proportion of spot prices and are computed at 1% and 5% level.

(a) Nonparametric MS and 95% DFCI for S&P 500

(b) Nonparametric MS and 95% DFCI for USD/GBP
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Figure 4: Time series of the nonparametric ES and the nonparametric MS of a long
position on the S&P 500 (left side) and a long position on the USD/GBP exchange
rate (right side). Risk measures are expressed as a proportion of spot prices and are
computed at 1% level, 2.5% level and 5% level.
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Figure 5: Time series of the parametric VaR, the parametric MS and the related 95%
confidence intervals for a long position on the S&P 500 and a long position on the
USD/GBP exchange rate. Calculations are done assuming a gaussian distribution for
the returns of the asset. Risk measures and their bounds are expressed as a proportion
of spot prices and are computed at 1% level.

(a) Parametric VaR and MS with 95% CI for S&P 500

(b) Parametric VaR and MS with 95% CI for USD/GBP
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Figure 6: Time series of the parametric VaR, the parametric MS and the related 95%
confidence intervals for a long position on the S&P 500 and a long position on the
USD/GBP exchange rate. Calculations are done assuming a NIG distribution for the
returns of the asset. Risk measures and their bounds are expressed as a proportion
of spot prices and are computed at 1% level.

(a) Parametric VaR and MS with 95% CI for S&P 500

(b) Parametric VaR and MS with 95% CI for USD/GBP
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Figure 7: Time series of the p-values of the difference between the quantiles of the re-
turns empirical distribution used to calculate VaR and MS at 1% for the S&P 500 and
the USD/GBP exchange rate. P-values are calculated assuming that the true distri-
bution of financial returns is gaussian (left) and NIG (right). Marks highlight failures,
namely the dates in which the computed probability to overcome the estimated dif-
ference between the quantiles of the returns used to calculate the nonparametric VaR
and the nonparametric MS is rejected at 5%.

(a) P-values VaR-MS at 1% under gaussian (left) and NIG (right) for S&P 500

(b) P-values VaR-MS at 1% under gaussian (left) and NIG (right) for USD/GBP
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Figure 8: Time series of two-week losses, expected losses computed according to the
nonparametric VaR, unexpected losses calculated on the basis of the nonparametric
MS, upper part of the 95% distribution-free confidence interval – (a) and (b) – and
the 95% parametric confidence interval – (c) and (d) – for the nonparametric MS, the
nonparametric ES, capital requirements computed according to BCBS (only first term
in formula (23)) for the nonparametric VaR – (a) and (b) – and the parametric VaR –
(c) and (d) –, for an investment of $100 in the S&P 500 and in the USD/GBP exchange
rate. The 95% confidence interval for the nonparametric MS, the nonparametric ES
and the BCBS capital requirements are calculated assuming a nonparametric i.i.d
model – (a) and (b) – and a NIG distribution – (c) and (d) – for the returns of the
asset.

(a) S&P 500 under nonparametric (b) USD/GBP under nonparametric

(a) S&P 500 under NIG (b) USD/GBP under NIG
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Table 6: Pérignon and Smith Multivariate Unconditional Coverage Test for VaR based
and MS based risk measures related to a long position on the S&P 500 and a long posi-
tion on the USD/GBP exchange rate. Risk measures are the nonparametric VaR/MS,
the VaR/MS computed assuming a Normal distribution and a NIG distribution for
the returns of the asset, the upper bound of the distribution-free confidence interval
for the nonparametric VaR/MS, the upper bound of the parametric confidence inter-
vals for the nonparametric VaR/MS estimated assuming a Normal distribution and a
NIG distribution for the returns of the asset, and the VaR/MS calculated assuming a
GARCH(1,1)-Normal model and a GJR-GARCH(1,1)-Normal model for the returns
of the asset. PUB and DFUB denote, respectively, the parametric upper bound and
the distribution-free upper bound determined with order statistics. For each risk
measure the test is performed on a vector of estimates computed at three critical
levels, namely 1%, 2.5% and 5%.

M. U. C. T-stat
Model S&P 500 USD/GBP

Nonparametric VaR 21.077 7.458**
Normal VaR 106.239 51.128

NIG VaR 5.905*** 1.281***
DFUB VaR 53.808 78.210

Normal PUB VaR 84.198 42.168
NIG PUB VaR 38.250 63.875

GARCH-N VaR 89.517 17.861
GJR-GARCH-N VaR 84.404 16.492

Nonparametric MS 18.670 1.126***
Normal MS 139.060 40.567

NIG MS 8.801* 1.227***
DFUB Nonpar MS 17.627 40.117

PUB Normal MS 49.278 23.044
PUB NIG MS 25.613 59.461

GARCH-N MS 93.043 27.109
GJR-GARCH-N MS 85.844 29.941

*, ** and *** denotes the model that passes the test at 1% level, 5% level and 10% level
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Table 7: Costs related to holding capital requirements computed according to the
BCBS regulation (first term of formula formula (23)) with respect to holding capital
requirements determined on the basis of our measures of unexpected losses for an
investment of $100 in the S&P 500 and in the USD/GBP exchange rate over the time
period 02/01/1984− 10/07/2014. The cumulative interest daily time series is calcu-
lated using the middle rate on 3-months deposits determined on the Eurocurrency
market is used as proxy for the US risk free rate. Evidence on the number of times
in which the realized 10-day losses exceed BCBS capital requirements (first term of
formula (23)) and our measures of unexpected losses is also reported.

S&P 500 USD/GBP

Cumulative interest lost (Nonparametric) 21.90 25.91
No. of extra losses on our CR (Nonparametric) 20 24
No. of extra 10-day losses on BCBS CR (Nonparametric) 4 0

Cumulative interest lost (Normal) 38.88 24.63
No. of extra 10-day losses on our CR (Normal) 52 73
No. of extra 10-day losses on BCBS CR (Normal) 4 0

Cumulative interest lost (NIG) 39.16 25.92
No. of extra 10-day losses on our CR (NIG) 15 19
No. of extra 10-day losses on BCBS CR (NIG) 1 0

Cumulative interest lost (GARCH(1,1)-Normal) 40.96 26.44
No. of extra 10-day losses on our CR (GARCH(1,1)) 87 113
No. of extra 10-day losses on BCBS CR (GARCH(1,1)) 4 0

Cumulative interest lost (GJR-GARCH(1,1)-Normal) 41.86 26.62
No. of extra 10-day losses on our CR (GJR-GARCH(1,1)) 88 119
No. of extra 10-day losses on BCBS CR (GJR-GARCH(1,1)) 4 0
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Appendix

Proofs of Properties of Risk Measures

Here we derive the cdf of the negative part of a random variable Y . Denoting by

Z = min(Y, 0) and by FY Z the joint cdf of (Y, Z)

FY Z(y, z) = P (Y ≤ y, Z ≤ z) = P (Y ≤ y,min(Y, 0) ≤ z)

If z ≥ 0 then FY Z(y, z) = P (Y ≤ y) = FY (y). Ifz < 0

FY Z(y, z) = P (Y ≤ y,min(Y, 0) ≤ z)

= P (Y ≤ y,min(Y, 0) ≤ z, Y > 0) + P (Y ≤ y,min(Y, 0) ≤ z, Y ≤ 0)

= P (Y ≤ y, 0 ≤ z,X > 0) + P (Y ≤ y, Y ≤ z, Y ≤ 0)

= P (Y ≤ min(y, z, 0))

= FY (min(y, z, 0)) = FY (min(y, z))

Hence

FY Z(y, z) =

 FY (y), z ≥ 0;

FY (min(y, z)), z < 0.

Then, because FZ(z) = limy→∞ FY Z(y, z) we get that

FZ(z) =

 1, z ≥ 0;

FY (z), z < 0.

Here we detail the proofs for some of the results mentioned in the paper with

respect to the monotonicity of specific risk property requiring that if a position Y1 is

cloned into independent copies Y1, Y2, . . . , Yn, . . . then for any integers 0 < m ≤ n we
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have that

1

n
ρ(Y1 + Y2 + . . . Yn) ≤ 1

m
ρ(Y1 + Y2 + . . . Ym) (24)

so more positions of the same kind should reduce the risk per unit of trade. Thus we

prove the following result.

Proposition 8.1. Proof:

If m and n are large enough, for any α ∈ (0, 0.5), V aRα and ESα are both monotonic

to specific risk.

The intuition for this result lies in the central limit theorem because if Y1, Y2, . . . , Yn, . . .

are i.i.d with mean µ and variance σ2, then Y1 + . . .+ Yn ∼ N(nµ, nσ2). It is known

that for a gaussian distributed variable Y ∼ N(µ, σ2) V aRα(Y ) = −µ−σΦ−1(α) and

ESα(Y ) = −µ+ σ
α
ϕ[Φ−1(α)]. Then for any large m < n such that the CLT theorem

applies

1

n
V aRα(Y1 + . . . Yn) <

1

m
V aRα(Y1 + . . .+ Ym)

and

1

n
ESα(Y1 + . . . Yn) <

1

m
ESα(Y1 + . . .+ Ym)

If Y ∼ N(µ, σ2) then the quantile of order α, denoted by qα is given by

qα = µ+ σΦ−1(α)

and since V aRα = −qα it follows that

V aRα(Y ) = −µ− σΦ−1(α)

Since ESα = 1
α

∫ α
0
V aRudu a direct calculus shows that

ESα(Y ) = −µ+
σ

α
ϕ[Φ−1(α)]

Consider now that Yi
i.i.d.∼ F for all positive integers i, such that E(Yi) = µ and
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var(Yi) = σ2. Then by central limit theorem, for large enough n, Y1 + . . . Yn is

approximately distributed with N(nµ, nσ2). Hence, for m ≤ n and m large enough

and α ∈ (0, 0.5),

1

n
V aRα(Y1 + . . . Yn) ≤ 1

m
V aRα(Y1 + . . . Ym)

1

n

[
−nµ−

√
nσΦ−1(α)

]
≤ 1

m

[
−mµ−

√
mσΦ−1(α)

]
−µ− 1√

n
σΦ−1(α) ≤ −µ− 1√

m
σΦ−1(α)

1√
n
≤ 1√

m

Remark that for α ∈ (0, 0.5) we know that Φ−1(α) < 0. Hence the inequality is

reversed for α > 0.5 but this is not practically relevant for risk management.

Similarly, the monotonicity of specific risk condition is equivalent for ES to show

that for m ≤ n

1

n
ESα(Y1 + . . . Yn) ≤ 1

m
ESα(Y1 + . . . Ym)

1

n

[
−nµ+

√
n
σ

α
ϕ[Φ−1(α)]

]
≤ 1

m

[
−mµ+

√
m
σ

α
ϕ[Φ−1(α)]

]
−µ+

1√
n

σ

α
ϕ[Φ−1(α)] ≤ −µ+

1√
m

σ

α
ϕ[Φ−1(α)]

1√
n
≤ 1√

m

where the last inequality follows because ϕ[Φ−1(α)] is always positive.

We shall prove now that the same condition is satisfied not necessarily asymptot-

ically, and also not only for the gaussian case. Consider that Y ∼ Cauchy(µ, γ). The

family of Cauchy distributions is closed to convolution , that is if Y1 ∼ Cauchy(µ1, γ1)

and Y2 ∼ Cauchy(µ2, γ2) then Y1 + Y2 ∼ Cauchy(µ1 + µ2, γ1 + γ2). The cdf of

Y ∼ Cauchy(µ, γ) is given by FY (y) = 1
π

arctan
(
y−µ
γ

)
+ 0.5 and the quantile func-
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tion is Qα = µ+ γ tan (π(α− 0.5)). Then

V aRα(Y ) = −µ− γ tan (π(α− 0.5))

This formula allows also to derive the analytical expression for the ES of a Cauchy

distributed variable.

ESα(Y ) =
1

α

∫ α

0

V aRudu

=
1

α

∫ α

0

[−µ− γ tan (π(u− 0.5))]du

= −µ+
γ

απ
ln | cos π

(
1

2
− α

)
|

Thus, for α ∈ (0, 0.5)

ESα(Y ) = −µ+
γ

απ
ln cosπ

(
1

2
− α

)

Therefore,

1

n
V aRα(Y1 + . . . Yn) ≤ 1

m
V aRα(Y1 + . . . Ym)

1

n

[
−nµ+ nγ tanπ

(
1

2
− α

)]
≤ 1

m

[
−mµ+mγ tanπ

(
1

2
− α

)]
−µ+ γ tanπ

(
1

2
− α

)
≤ −µ+ γ tanπ

(
1

2
− α

)

and

1

n
ESα(Y1 + . . . Yn) ≤ 1

m
ESα(Y1 + . . . Ym)

1

n

[
−nµ+ n

γ

απ
ln cosπ

(
1

2
− α

)]
≤ 1

m

[
−mµ+m

γ

απ
ln cosπ

(
1

2
− α

)]
−µ+

γ

απ
ln cosπ

(
1

2
− α

)
≤ −µ+

γ

απ
ln cosπ

(
1

2
− α

)

Thus, for Cauchy distributed payoffs, the inequalities are satisfied with equality, for

63



both VaR and ES. Hence, in this case there is no gain in increasing the number of

trades of the same kind.

The Procedure of Calculating the P-values for Unexpected

Losses Measure

Assume that we have n order statistics, Y[1], . . . , Y[n], which represent our ordered

financial returns. We define VaR and MS, respectively, as a monotonic transformation

of the order statistics Y[v] and Y[m], with v > m. We want to calculate the probability

PF (Y[v] − Y[m] ≤ d) i.e. the probability that the difference between the two quantiles

for VaR and MS is lower or equal to a certain value d. We impose d to be the difference

between the estimated quantiles, namely the quantiles obtained from the empirical

distribution of financial returns. If Y[m] = z and Y[v] = y, the density function of

D = y − z is:

q(d) = K

∫ ∞
−∞

Fm−1(z) [F (z + d)− F (z)]v−m−1 [1− F (z + d)]n−v f(z)f(z + d)dz

(25)

with K = n!
(m−1)!(v−m−1)!(n−v)! . The order statistics Y[1], . . . , Y[n] in a sample from

any absolutely continuous distribution with cdf F can be transformed by the order-

preserving probability integral transformation ỹ = F (y) into order statistics drawn

from a uniform distribution on the interval [0, 1], U[1], . . . , U[n]. Thus we can transform

z and y into z̃ = F (z) and ỹ = F (y) and we can denote by D̃ = ỹ − z̃. Recalling

the expressions for the density function and the distribution function of a uniform

random variable in [0, 1], since f(z̃+ d̃) = 0 for z̃ > 1− d̃, from formula (25) we have:

q(d̃) =K

∫ d̃

0

z̃m−1d̃v−m−1
(

1− z̃ − d̃
)n−v

dz̃

0 ≤ d̃ ≤ 1

(26)
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This density function is absolutely equivalent to the density function in formula (25).

Setting z̃ = ν
(

1− d̃
)

, formula (26) can be rewritten as:

q(d̃) =K

∫ 1

0

νm−1(1− d̃)m−1d̃v−m−1
[
(1− ν)

(
1− d̃

)]n−v (
1− d̃

)
dν

=K(1− d̃)m−1d̃v−m−1
(

1− d̃
)∫ 1

0

νm−1
[
(1− ν)

(
1− d̃

)]n−v
dν

=
n!

(m− 1)!(v −m− 1)!(n− v)!
(1− d̃)n−v+m−1+1d̃v−m−1

∫ 1

0

νm−1 (1− ν)n−ν︸ ︷︷ ︸
B(m,n−v−1)

dν

=
n!(m− 1)!(n− v + 1− 1)!

(m− 1)!(v −m− 1)!(n− v)!(n− v +m+ 1− 1)!
(1− d̃)n−v+md̃v−m−1

=
1

B(v −m,n− v +m+ 1)
(1− d̃)n−v+md̃v−m−1

0 ≤ d̃ ≤ 1.

(27)

As a last step we compute the probability PF (D ≤ d) = PF (D̃ ≤ d̃) as follows:

PF (D ≤ d) =
1

B(v −m,n− v +m+ 1)

∫ d̃

0

(1− u)n−v+muv−m−1du

=Bd̃(v −m,n− v +m+ 1)

0 ≤ d̃ ≤ 1.

(28)

Formula 28 is exactly the closed-form expression we use to calculate the p-values.

Further Results Capital Requirements Calculations

Figure 9 show the two-week losses, the expected losses (computed according to the

nonparametric VaR), the unexpected losses (calculated on the basis of the nonpara-

metric MS), the unexpected losses adjusted for parameter risk estimation (i.e. the

upper part of the 95% confidence interval for the nonparametric MS) and the capi-

tal requirements computed according to BCBS regulation ignoring stressed scenarios

(first term of formula (23)) for an investment of $100 in the S&P 500 and in the
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USD/GBP exchange rate. In Figure 9 the unexpected losses adjusted for parameter

risk estimation are obtained as the upper part of the 95% parametric confidence in-

terval for the nonparametric MS. This parametric confidence interval and the BCBS

capital requirements are calculated assuming a gaussian distribution for the returns

of the asset. Figure 9 gives a further confirmation of the inadequacy of the gaussian

method since all our measures of expected losses and unexpected losses (with and

without adjustment for parameter risk estimation) are frequently exceeded by the

realized losses.

[Figure 9 about here.]

Using the BCBS capital requirements levels is not only inefficient but it may also

cause confusion when comparing different models. For example, for the gaussian

model the BCBS capital requirements are much lower than those obtained under the

nonparametric or the NIG models. This may induce a false inference favoring the

gaussian model over the other approaches while clearly the gaussian model is inapt

to capture extreme tail losses, as demonstrated in this paper in earlier sections.

The results presented in Figure 10 indicate that although GARCH models react

quicker to changes in market risk, the difference between the minimum capital re-

quirements calculated based on the first term of formula (23) and the estimated of

risk given by those models is again extremely large over the entire period of investi-

gation. Furthermore, while there is some improvement by employing a GJR GARCH

model in the sense that the VaR estimates look closer to the realised losses for the

S&P500 market, there seems to be very little improvement on the USD/GBP market.

In addition, the entire set of calculations presented in Figure 10 is a lot more irregular,

more spikes, than the results presented in the paper under the NIG model, nonpara-

metric model and the gaussian model. This implies that the frictions costs generated

in order to satisfy risk management regulations is a lot higher. Banks would need to

top-up their buffer account with large sums of money and soon after they will have
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to decrease their reserves. This suggests that GARCH models could be very capital

intensive and somehow unnecessarily.

[Figure 10 about here.]

67



Figure 9: Time series of two-week losses, expected losses computed according to the
nonparametric VaR, unexpected losses calculated on the basis of the nonparametric
MS, upper part of the 95% parametric confidence interval for the nonparametric MS,
the parametric ES, capital requirements computed according to BCBS (only first
term in formula (23)) for the parametric VaR, for an investment of $100 in the S&P
500 and in the USD/GBP exchange rate. The 95% parametric confidence interval for
the nonparametric MS, the parametric ES and the BCBS capital requirements are
calculated assuming a gaussian distribution for the returns of the asset.

(a) S&P 500 under gaussian (b) USD/GBP under gaussian
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Figure 10: Time series of two-week losses, parametric VaR, parametric ES, para-
metric MS and capital requirements computed according to BCBS for the parametric
VaR, for an investment of $100 in the S&P 500 and in the USD/GBP exchange rate.
The parametric VaR, the parametric ES, the parametric MS and the BCBS capital
requirements (only first term in formula (23)) are calculated assuming a GARCH(1,1)
model with Normal innovations and a GJR-GARCH(1,1) model with Normal inno-
vations for the for the returns of the asset. The two plots concerning the S&P 500
have been cut and the relevant peaks are displayed next to the arrow.

(a) S&P 500 under GARCH(1,1) (b) USD/GBP under GARCH(1,1)

(a) S&P 500 under GJR-GARCH(1,1) (b) USD/GBP under GJR-GARCH(1,1)
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